The Absolute Anabelian Geometry of Canonical Curves

نویسنده

  • Shinichi Mochizuki
چکیده

In this paper, we continue our study of the issue of the extent to which a hyperbolic curve over a finite extension of the field of p-adic numbers is determined by the profinite group structure of its étale fundamental group. Our main results are that: (i) the theory of correspondences of the curve — in particular, its arithmeticity — is completely determined by its fundamental group; (ii) when the curve is a canonical lifting in the sense of “p-adic Teichmüller theory”, its isomorphism class is functorially determined by its fundamental group. Here, (i) is a consequence of a “p-adic version of the Grothendieck Conjecture for algebraic curves” proven by the author, while (ii) builds on a previous result to the effect that the logarithmic special fiber of the curve is functorially determined by its fundamental group. 2000 Mathematics Subject Classification: 14H25, 14H30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topics in Absolute Anabelian Geometry Ii: Decomposition Groups and Endomorphisms

The present paper, which forms the second part of a three-part series in which we study absolute anabelian geometry from an algorithmic point of view, focuses on the study of the closely related notions of decomposition groups and endomorphisms in this anabelian context. We begin by studying an abstract combinatorial analogue of the algebro-geometric notion of a stable polycurve [i.e., a “succe...

متن کامل

Topics in Absolute Anabelian Geometry Iii: Global Reconstruction Algorithms

In the present paper, which forms the third part of a three-part series on an algorithmic approach to absolute anabelian geometry, we apply the absolute anabelian technique of Belyi cuspidalization developed in the second part, together with certain ideas contained in a earlier paper of the author concerning the categorytheoretic representation of holomorphic structures via either the topologic...

متن کامل

Topics in Absolute Anabelian Geometry I: Generalities

This paper forms the first part of a three-part series in which we treat various topics in absolute anabelian geometry from the point of view of developing abstract algorithms, or “software”, that may be applied to abstract profinite groups that “just happen” to arise as [quotients of] étale fundamental groups from algebraic geometry. In the present paper, after studying various abstract combin...

متن کامل

Anabelian Intersection Theory I: the Conjecture of Bogomolov-pop and Applications

A. Grothendieck first coined the term “anabelian geometry” in a letter to G. Faltings [Gro97a] as a response to Faltings’ proof of the Mordell conjecture and in his celebrated Esquisse d’un Programme [Gro97b]. The “yoga” of Grothendieck’s anabelian geometry is that if the étale fundamental group πét 1 pX,xq of a variety X at a geometric point x is rich enough, then it should encode much of the ...

متن کامل

Topics Surrounding the Anabelian Geometry of Hyperbolic Curves

§0. Introduction §1. The Tate Conjecture as a Sort of Grothendieck Conjecture §1.1. The Tate Conjecture for non-CM Elliptic Curves §1.2. Some Pro-p Group Theory §2. Hyperbolic Curves as their own “Anabelian Albanese Varieties” §2.1. A Corollary of the Main Theorem of [Mzk2] §2.2. A Partial Generalization to Finite Characteristic §3. Discrete Real Anabelian Geometry §3.1. Real Complex Manifolds ...

متن کامل

Global Solvably Closed Anabelian Geometry

In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003